上海鸿麦金属专注金属产品加工供应商

欢迎访问鸿麦金属材料(上海)有限公司

公司新闻

当前位置:鸿麦金属  > 新闻动态 > 公司新闻

热门关键词5083-H112   5083-H111   7075   6061  

联系我们

鸿麦金属材料(上海)有限公司

销售总机:021-37702221
技术支持:021-37702231
公司传真:021-37023229
业务经理:杨静  18017902101 
QQ在线:3218646562
Email:3218646562@qq.com
地 址:上海市青浦区北青公路1858弄3号厂房

炼40MnB圆钢高新技术之特殊冶金法

点击率:    发布时间:2015/1/28 15:29:51    信息来源:上海鸿麦金属

包括电渣重熔、真空冶金、等离子冶金、电子束熔炼、区域熔炼等多种炼钢方法的总称。某些高新技术或特殊用途要求特高纯度钢,若用普通炼钢方法加炉外精炼达不到要求时,则可采用特殊冶金方法炼制。
 
  电渣重熔:将冶炼好的钢铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺,也称ESR。它的热源来自熔渣电阻热,重熔时自耗电极浸入熔渣中,电流通过电离后的熔渣,使熔渣升温达到比被熔自耗电极熔点高得多的温度。插入熔渣中的自耗电极端头熔化后形成熔滴,并靠自重穿越渣池,得到渣洗精炼而后在减少空气污染的情况下进入金属熔池。钢锭与结晶器壁之间形成薄的渣皮,既减缓了径向冷却,也改善了成品钢锭表面质量,借助结晶器底部水冷,凝固成轴向结晶倾向和偏析少的重熔钢锭,改善了热加工塑性。
 
  等离子冶金:以等离子流为热源的冶金过程,即利用等离子枪将电能转变为定向等离子射流中的热能。等离子射流具有电弧稳定、热量高度集中、可达到非常高的温度等特点。有的等离子枪的工作温度高达5000~20000℃。等离子枪可用惰性气体(Ar)、还原性气体(H2)等为介质,以达到不同的冶金目的。等离子炉可用于熔炼高熔点金属和活泼金属以及金属或合金的提纯。等离子体技术也已用于钢铁厂废尘处理和铁合金生产工艺。
 
  喷射冶金:为加速液体金属与物料的物理化学反应,用气体喷射的方法把粉末物料送入液体金属,完成冶金反应的工艺,亦称喷粉冶金。该工艺广泛用于铁水予处理和钢包精炼,以达到脱硫、脱氧、成分微调、使夹杂物变性的目的。此工艺的反应速度快,物料利用率高。
 
  区域熔炼:1952年W.G.Pfann提出的一种利用液固相中杂质元素溶解度不同的特点提炼金属的工艺。其操作原理是:设一个均匀的固态金属棒中有一小段金属被熔化成液体,那么,若这一小段液态区域自左向右缓慢移动,则每移动一次,杂质都会重新分布,其效果就相当于把杂质驱赶到右端。经过多次这样的重复,左端金属便可达到很高的纯度。

真空冶金:在低于0.1MPa至超高真空条件下133.3×(<760~10-12)Pa进行的冶金过程,包括金属及合金的提炼、冶炼、重熔、精炼、成形和热处理。目的主要在于:
 
  ① 减少金属受气相的污染;
 
  ② 降低溶解于金属中的气体或易挥发的杂质含量;
 
  ③ 促进有气态产物的化学反应;
 
  ④ 避免由耐火材料容器带来的污染。以适应高性能金属材料及新型金属材料的需要。随着生产电热材料、电工合金、软磁合金以及高温镍基合金等高性能和新型金属材料的需要,发展了各种真空熔炼方法,主要有真空电阻熔炼、真空感应熔炼、真空电弧重熔、电子束熔炼及电渣重熔等。
 
  真空电弧熔炼:在真空(10-2~10-1Pa)下借助电弧供热重熔金属和合金的工艺,也称VAR法。其过程是:以水冷铜坩埚为正极,被熔自耗电极接在经滑动密封进入炉体的假电极上为负极,输入低压直流电流在电极与坩埚底之间引弧,借助电弧供热重熔金属和合金。伴随自耗电极的熔化,通过控制电极的下降速度,将自耗电极重熔为成分均匀、组织致密、纯净度高和偏析少的重熔钢锭。它不仅用于重熔活性金属和耐热难熔金属,而且也用于重熔使用要求较严格的高温合金和特殊钢。
 
  真空电子束熔炼:在较高真空(133.3×10-4~133.3×10-8Pa)下用电子枪发射电子束,轰击被熔炼物料(作为阳极),使之熔化并滴入水冷铜结晶器凝固成锭的熔炼方法。锭由机械装置连续抽出。此法可以调节能量分布,控制熔化速度。电子束重熔材料的纯净度比其他真空熔炼法的更高。它适于熔炼钨、钼等金属及其合金、高级合金钢、高温合金和超纯金属。
 
  真空电阻熔炼:在真空下以电流通过导体所产生的热为热源的熔炼方法。一般采取间接加热,由电热体把热能传给炉中物料。根据需要,电阻炉内的气氛可以是惰性或保护性的。真空电阻炉可设计成熔炼炉或热处理炉。
 
  真空感应熔炼:在真空下利用感应电热效应熔炼金属和合金的工艺。按炉料和容量选择电源频率。它有高频(>104Hz)和中频(50~104Hz)以及工频(50或60Hz)两类。感应炉又分有芯(闭槽式)和无芯(坩埚式)两大类。前者电热效率高,功率因数高,但要有起熔体,熔炼温度低,适用于单一品种的连续熔炼;后者熔炼温度高,电热效率低,适于特殊钢和镍基合金等的熔炼。真空感应熔炼在高温合金、高强度钢和超高强度钢等生产中得到广泛应用。
 
  碳纤维增强塑料与不锈钢激光焊接解决方案
 
  由于碳纤维增强塑料(CFRP)具有很高的强度对重量比(strength-to-weight ratio)、出色的抗腐蚀性能和优良的疲劳性能,因而受到了极大的关注,上述特点让这种材料适合用在飞机、汽车和其他产品中。汽车工业对热塑性碳纤维增强塑料尤其感兴趣,因为它有望缩短生产时间。
 
  将塑料或碳纤维增强塑料与金属接合在一起,通常需要使用胶粘剂或螺栓、铆钉等机械工具。然而, 这些接合工艺有几种不足之处,如挥发性有机化合物(VOC)排放的环境限制、粘合时间较长,螺钉或铆钉也会增加重量。因此,Seiji Katayama教授带领团队开发出激光辅助直接焊接金属和塑料(LAMP)的技术。通过使用连续波(CW)Nd:YAG激光器、半导体激光器、光纤激光器或碟片激光器等,该技术能迅速而牢固地将诸如钢、不锈钢、铝合金在内的金属与工程热塑性塑料(例如聚酰胺PA、聚对苯二甲酸乙二醇酯PET和聚碳酸酯PC)接合起来。
 
  LAMP焊接技术可以牢固地将碳纤维增强塑料片材和304不锈钢板焊接在一起,其中使用CW碟片激光器在金属上生成不焊透焊缝。图1显示了聚丙烯腈(PAN)型PA基材碳纤维增强塑料片材与304不锈钢板之间的激光搭接接头在做拉伸剪切试验前、后的情况。其中,碳纤维增强塑料片材厚度为3mm、宽度为20mm, 具有较长的碳纤维,不锈钢板厚度为3mm、宽度为30mm。横截面的照片(见图1中的插图)显示了不锈钢中浅层小孔形成的激光焊道。此外,熔化区广泛分布在碳纤维增强塑料片材中靠近接合面的区域。在图1b中,我们可以观察到黑色的碳纤维增强塑料片材粘结在304不锈钢板的底表面。特别是,粘结的碳纤维增强塑料部分主要根据激光焊道下的不锈钢板而识别出来。在碳纤维增强塑料片材的接合面中也能看到不锈钢的部分。上述事实表明形成牢固的焊接接头是可行的。